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Abstract 0 An approach is developed by which the solubility of an or- 
ganic compound in mixed solvents may be estimated. In this approach, 
an expression for the excess Gibbs free energy of mixing for multicom- 
ponent solvent systems was used to  obtain parameters characteristic of 
the interaction between the solvents. A fairly simple equation which 
predicts the solubility of a solute in a binary solvent system over the entire 
solvent composition range was then derived. The equation may be par- 
titioned into terms that contain (a)  pure solvent solubilities, ( b )  sol- 
vent-solvent interaction contributions, and (c) contributions from the 
solute-mixed solvent interactions. The required data are the molar vol- 
ume of the solute, the pure solvent solubilities, and, theoretically, one 
experimentally determined solubility in a solvent mixture. The equation 
can be easily extended for systems with three or more solvents. 

Keyphrases Solubility-mixed solvent systems, estimation by an 
excess free energy approach, theory 0 Excess free energy-use in esti- 
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For pharmaceutical purposes, it is often necessary to 
dissolve a nonpolar or slightly polar drug in a mixture of 
water and one or more cosolvents such as ethanol, glycerol, 
propylene glycol, and low-molecular weight polyethylene 
glycols to increase its solubility. It is also often desirable 
to know if and where a maximum exists in the solubility 
profile of the drug in the mixture of solvents. Apart from 
determining such a profile experimentally over the whole 
solvent composition range, no general method exists at  
present which can, with a minimum of experiments, 
completely describe the solubility in the solvent mixture. 
Typical approaches to the estimation of solubility in mixed 
solvents merely express solubility in terms of a power series 
in mole or volume fraction multiplied by arbitrary num- 
bers that have little physical meaning (1). Although useful 
such equations are by their nature restricted to and only 
useful for the particular solute-solvent systems for which 
they were formulated. 

Recently Martin and coworkers (2-5) have attempted 
to use an extended form of the regular solution equation 
for the solubility of solids to estimate solubility in pure and 
mixed solvents. This is accomplished, in effect, by adding 
a term, W ,  to the expression for the regular solution ac- 
tivity coefficient to account for non-dispersion-type so- 
lute-solvent interactions. W is then estimated from dif- 
ferences between experimental and calculated solubilities 
using the regular solution equation. While their method 
is an improvement over the purely empirical approach, it 
does have a few disadvantages. For instance, it requires 
obtaining the heat of fusion, melting point, molar volume, 
and solubility parameter of the solute and the solubility 
parameter of the solvent or solvent mixture. When these 
data are not readily available, the experimental labor in- 
volved in determining them may be such as to frustrate the 
ultimate aim of the approach, i e . ,  to estimate solubility 
with a minimal number of experiments. As the authors 
have also pointed out (2), the correction term ( W )  is dif- 

ficult to determine independently, and the solubility pa- 
rameter of the solute may assume a different value in a 
different solvent system (although this does not seriously 
affect the results) (4). 

This paper presents the theoretical aspects of a method 
based on an excess free energy model which can be used to 
characterize the solubility of compounds in binary and 
ternary solvent systems. The method is general and ap- 
plicable, in principle, to virtually any solute-mixed solvent 
system as long as the solubility is not high. The data re- 
quired are the molar volume of the solute, the pure solvent 
solubilities, and, theoretically, one experimentally deter- 
mined solubility in a solvent mixture. The last item is re- 
quired for estimating C p ,  a ternary interaction term. Al- 
though estimated empirically, C2, unlike W ,  results logi- 
cally from the development of the excess free energy model 
for the system. .Subsequent papers in this series (6, 7) 
discuss the usefulness of this approach in describing ex- 
perimental data from the literature. 

THEORETICAL 

For a solute in solution in equilibrium with its solid phase: 

0%. 1) 

where R1" is the fugacity of the solute in solution a n d p  is the fugacity 
of the pure solid. The fugacity of the solute in solution may be expressed 
as (8): 

fp = xzy2fg (Eq. 2) 

where x z  is the mole fraction concentration of the solute, 72 is the sym- 
metric convention activity coefficient, and f i  is the fugacity of the hy- 
pothetical pure liquid at the same temperature and pressure as the so- 
lution (as is shown later, fg drops out of the equation and, therefore, its 
evaluation does not present a problem). 

The symmetric convention activity coefficient ( 7 2 )  has the property 
that yp - 1 as x p  - 1, while the unsymmetric convention activity coef- 
ficient (7;) has the property that 7; - 1 as x p  - 0. The relationship be- 
tween the two activity coefficients has been derived by Prigogine and 
Defay (9): 

fpln = f y e  

*/z = limit Yz 
7; x2-0 

(Eq. 3) 

If x 2  approaches zero, 7; is equal to  -1 and Eq. 3 becomes: 

72 0 limit Y Z  (Eq. 4) 
x2-0 

This situation is described by Henry's Law which may be written as: 
fsoln 

limit = Hz 0%. 5) 
r2-0 xz 

If we assume that the mole fraction solubility is sufficiently small such 
where Hp is the Henry's Law constant. 

that  Henry's Law holds up to the solubility limit, we can write: 

where x ;  is the mole fraction solubility. In many cases of interest, the mole 
fraction solubility of the drug or chemical in question is low enough even 
in the pure cosolvent to  justify such an assumption. 
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Comparison of Eqs. 2 and 5 shows that: 

Hz limit 7 2  = - 

If we take the logarithm of Eq. 7 and then write the expression for the 
solute in solvents 1 and 3 separately, we obtain for solvent 1: 

(Eq. 7) 
x2-0 A 

H2,1 limit In y2,1 = In - 
x2-0 A (Eq. 8a) 

and for solvent 3: 

(Eq. 8b) limit In y2,3 = In - 

We note here that subscript 2 is used for the solute while subscripts 1, 
3,4, etc. are used for the pure solvents. For a binary mixture (denoted 
by subscript m) of solvents 1 and 3, Eq. 7 becomes: 

H2.3 

x*-0 f i  

(Eq. 8c) limit In ~ 2 , ~  = In - 

If we take the logarithms of Eqs. 1,2, and 4 and combine them, we obtain, 
a t  the solubility limit: 

H2 .m 

x2-0 18 

In x l  = In - - limit In yz (7) x2-0 
(Eq. 9) 

Substituting the expressions for In y2 in Eqs. 8a-c we obtain, for solvent 
1: 

(Eq. 10a) A““ In x;,~ = In - 
Hz,i 

for solvent 2: 

(Eq. lob) 
fRU‘e In x; ,~ = In - 
H2.3 

and for a mixture of solvents 1 and 3: 
mure 
1 2  In x&, = In - 
H2.m 

(Eq. 1Oc) 

We now define the volume fraction zi of any component i in the mix- 
ture as: 

1 

where y, is the molar volume of component i. If we let x 2  approach zero, 
2 2  also approaches zero, and z1 and 23 become solute-free volume frac- 
tions, i.e.: 

21 + 23  = 1 (Eq. 12) 

where the circumflex denotes solute-free terms. From Eq. 6 we can 
write: 

In A”” = In + In HZJ (Eq. 13a) 

and 

In m.l. = In ~ 5 2 , ~  + In H2,3 

If we multiply Eq. 13a by 21, Eq. 13b by 23, and add them, we obtain: 

(Eq. 13b) 

In lyre = 2l(ln x;,l + In H ~ J )  + L3(ln + In H2,3) (Eq. 14) 

Eq. 14 substituted into Eq. 1Oc gives: 

In x ; , ~  = 21 In X$,J t 23 In w;,~ - (In Hz,,,, - 21 In H2,l - 2 3  In H2.3) 

Equation 15 shows that the solubility of a compound in a binary solvent 
mixture is a volume fraction-weighted sum of the two pure solvent 
solubilities plus what can be termed an excess Henry’s Law constant HF. 
In general, we may write: 

(Eq. 15) 

In ~ 9 2 , ~  = x 21 In x;,., - In H P  

In H p  = In Hz,,,, - x 2 1  In H Z , ~  

(Eq. 16) 

(Eq. 17) 

solv i 

solv 1 

For Eqs. 1 6 1 7  to be useful, an expression for In H F  must be developed. 
To obtain such an expression, we have employed an excess free energy 
model as proposed by Wohl(10). 

Excess Free Energy Model-The total free energy (C) of a homo- 

geneous system consisting of r components may be written as: 
r r 

; = I  i=l  
G = x nig; + RT 1 ni In xi + 

where ni represents the number of moles of the i th component, xi is the 
mole fraction of the i th  component, andgE is the excess free energy per 
mole. The first term represents the free energies of each of the pure 
components (gp being the free energy per mole of pure component i). The 
second term is the free energy of ideal mixing, and the third term repre- 
sents the excess free energy arising from nonidealities in the mixing. The 
partial molar free energy of component j a t  constant temperature, 
pressure, and composition is given by: 

= g, = gy + RT In x ,  + RT In y, (Eq. 19) 
( g ) T . P . n i +  j 

where 

In 1946, Wohl(l0) proposed a general method for expressing the excess 
free energies of mixtures in terms of increasing powers of the volume 
fractions ( 2 )  of the components. Thus, the excess free energy of a ternary 
system may be expressed as: 

“E 

+ 3a1122$?z + 3 Q 1 ~ ~ 2 1 2 ;  + 3U1132&3 + 3a133212: 

+ 3a2232523 + 3az33zzzi -t 6a123~1~223 + 4alllzz?z2 

+ 6 ~ 1 1 2 2 ~ f ~ q  + 4a12222123 4- 4alii3z~z3 + 6~11332f232 

+ 4a1333z1zj + + 60zp:33z$z~ + 4Q2333222; 

+ 12a1123zfz~z3 + 12a1223212$23 + 12a123: ,~1z~ (Eq. 21) 

where 21 = xlyl / (xlyl+ xzy2 + x3y3.. .) (see Eq. 11). The q values are 
usually considered a measure of the sizes of the molecules. In this report 
we have used molar volumes for the y-values; Wohl used the term 
“four-suffix y equation” in describing Eq. 21 to distinguish it from 
Margules-type equations which assume that all the molecules are of equal 
size. The “four” refers to the largest number of subscripts on an a term 
in the equation. As an example, a12 is a constant which represents the 
interaction between one molecule of component l‘and another of com- 
ponent 2. Also, as Prausnitz (8) has pointed out, the probability that any 
pair of two molecules consists of one molecule each of components 1 and 
2 is given by 22122, Similarly a1133 is the interaction parameter for four 
interacting molecules two of which are components 1 and 3, respectively, 
and 62 fzs is the probability that any four neighboring molecules consist 
of two molecules each of components 1 and 3. Although the a values may 
be regarded, in a rough sense, as similar to virial coefficients, they do not 
have a rigorous theoretical basis (8). Their importance lies in the fact that 
they are physically meaningful parameters. 

Higher- or lower-suffix y equations may also be written for the excess 
free energy depending on the degree of complexity required. A three- 
suffix equation contains only the first 10 terms on the right-hand side 
of Eq. 21, and a two-suffix equation contains only the first three 
terms. 

Wohl(10) defined: 

A2.1 = qz(2alz + 3a112 + 401112) 

A1.z = ~1(2a12 -t 3a122 + 4a1222) 

A3-1 = ~3(2a13 + 3 a 1 ~  -t 4a1113) 

A1-3 = YI(2a13 + 30133 + 401333) 

A3-2 = Y3(2a23 -t 3a223 + 4a2223) 

A2-3 = ~ 2 ( 2 a ~ 3  -t 30233 + 4 ~ 3 3 3 )  

(Eq. 22a) 

(Eq. 22b) 

(Eq. 22c) 

(Eq. 22d) 

(Eq. 22e) 

(Eq. 22f) 

- 4a1222 + 601133 + 4azm - 12a11231 0%. 2%) 
ci = qi[(3aiiz + 3 ~ 1 3 3  + 3’2223 - 6~123) + 4aiiiz + 6a1122 

CZ = 42[(3U112 + 3 a m  + 3 ~ 2 2 3  - 6a123) + 4U2223 + 6~2233 

C3 = y3[(3a112 + 3a133 + 3 ~ ~ 2 3  - 60123) + 4~1333 + 6a1133 

- 4U2333 + 6a1122 + 4a1333 - 12a1z23] (Eq. 22h) 
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- 4a1113 + 6 ~ 2 2 3 3  + 4a1112 - 12~12331 0%. 22i) 

(Eq. 2%) 

(Eq. 22k) 

(Eq. 221) 

If we introduce Eqs. 22a-1 into Eq. 21 and differentiate the total excess 

Di2 = q 1 [ 4 ~ 1 1 1 2  + 4a1222 - 6~i izzI  

Di3 = 43[4a1333 + 4a1113 - 6 ~ 1 1 3 3 1  

D23 = 92[4a2223 + 4a2333 - 6 ~ ~ 2 3 3 1  

free energy with respect to n2, Eq. 23 is obtained: 

-c .?q2Z3(1  -322)-c1q221(1 -322) ] (Eq. 23) 

where nT is the total number of moles. Since, in our convention, subscripts 
1,2, and 3 represent one solvent, the solute, and the other solvent, re- 
spectively, in the mixture m, ~ 2 , ~  is the activity coefficient of a solute in 
a mixture of two solvents in which the solute is dissolved. If desired, the 
activity coefficients of each of the solvents may be obtained by appro- 
priately interchanging the subscripts (lo), but they are not needed in this 
analysis. 

For the purpose of our analysis Eq. 23 may be simplified by making 
the following approximations: 

3alZ2 3a112, 4a1222 4alllZ (Eq. 24a) 

3Q233 3a223, 4Q2333 is 4Q2223 (Eq. 24b) 

4 3  41 

With these approximations: 

(Eq. 25) Al-2 - 41 A2-3 - 92 
A2.1 42' 243.2 43 

Equations 24a and b imply that we are neglecting three (or more)-body 
interactions between the solute and each of the solvents. This approxi- 
mation seems reasonable in view of the fact that we are dealing in most 
cases with low concentrations of solute. If we apply the same approxi- 
mation to solvent-solvent interactions, Eq. 23 reduces to the van Laar 
equations which have been used to fit activity coefficient data with some 
success. 

Substituting Eq. 25 into Eq. 23 and letting x2 (and hence 2 2 )  approach 
zero, we obtain: 

42 limit In Y Z , ~  = A2-323 + A2.121 + A1.3ili3(2il - 1 )  - 
x2-0 41 

where A2.3 is the constant arising from the interaction of the solute with 
pure solvent 3, and A2.1 is the corresponding constant for the solute and 
pure solvent 1. 

Comparison of Eqs. 8a and b with the first two terms in Eq. 26 shows 
that: 

(Eq. 27a) H2.1 Jmit In y2,1 = In - = A2.! 
xz-0 f l  

and 

(Eq. 27b) H2,3 limit In y2.3 = In - = A2.3 
xz-0 f l  

Substituting Eqs. 8c, 27a, and 27b into Eq. 26, we obtain: 

In Hz,,,, = i l  In H ~ J +  23 In H2,3 + A1.3-91i3(2il- 1) 42 
41 

Note that f i  does not appear in Eq. 28; it drops out since 21 + 23 = 1. If 

we substitute Eq. 28 into Eq. 15, we obtain the final equation: 

q 2  In x;,, = 21 In x ; ~  + 2 3  In x;,~ - A1.3ili3(2il - 1) - 
41 

+ A3.122723-+ q 2  D133i?i iQz+ c3ilii-+ 4 2  c&3- 42 (Eq. 29) 
43 9 3  4 3  41 

The above equation will be referred to as the reduced four-suffix solubility 
equation since it was derived from the four-suffix excess free energy ex- 
pression. Other solubility equations to be derived later will be referred 
to in a similar manner. 

Equation 29 expresses the mole fraction solubility I$,, of the solute 
in the mixed solvent in terms of (a )  the pure solvent solubilities given by 
the first two terms, ( b )  contributions from solvent-solvent interactions 
given by the next three terms, and (c) contributions from the interaction 
between the solute and the solvent mixture described by the last two 
terms. The data needed for the estimation of the solubility in Eq. 29 
are: 

1. The pure solvent solubilities 
2. The binary solvent data (usually vapor pressure as a function of 

composition) from which solvent-solvent interaction constants 
A1.3, A3.1, and D13 may be obtained, 

and x; ,~.  

3. The molar volumes of the pure compounds. 
4. Two ternary experimental points (obtained from the solubility 

of the solute in the solvent mixture a t  two different compositions) 
from which C1 and C3 are calculated. I t  is important to note that 
the solvent-solvent interaction constants, once obtained a t  a 
particular temperature are fixed for the solvent system at that 
temperature. 

Corresponding two- and three-suffix equations may also be written 
for the system described by Eq. 23. The three-suffix equation is obtained 
by setting the D values equal to zero or, in other words, by neglecting 
four-body interactions. If this is done, then: 

42 q 3  

41 41 
cz = c1-, c3 = c1- 

and Eq. 23 becomes: 

(Eq. 31) 

where C2 = q2[3a112 + 3 ~ 1 3 3  + 3 ~ 2 2 3  - 6 ~ 1 2 3 1  and the A values are as de- 
fined in Eqs. 22a-f without four-body interaction terms. Following the 
same treatment given in Eqs. 23-29, we arrive a t  the reduced three-suffix 
solubility equation: 

9 2  In x;,, = 21 In xB1 + 23 In xg3 - A1.321&(2il- 1) - 
91 

+ A3.12i:i3%+ c 2 i l i 3  (Eq. 32) 

Equation 32 shows that only one constant, C2, needs to be obtained from 
ternary data and, theoretically, only one point in the ternary system is 
needed. 

The two-suffix equation is obtained by neglecting three- and four-body 
interactions. Then, Eq. 23 becomes: 

In ~ 2 , ~  = Z;A2.3 + zqAz., + 2123 A2.3 + A2., - A1.3 ") (Eq. 33) 

4 3  

( Ai.2 

where 

A1.2 = 2a 124 I ,  (Eq. 34a) 

A1-3 = 2Q1341, As-I = 2a1343 (Eq. 34b) 

A2-3 = 2Q2392, A3-2 = 2Q23q3 (Eq. 34c) 

Again, following the same treatment given in Eqs. 23-29 (excepting that 
it is not necessary to make the van Laar-type approximation mentioned 
earlier because it is already implied in Eq. 34), Eq. 33 leads to the reduced 
two-suffix solubility equation: 

A2-1 = 2~ 1242 
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Tab le  I-Summary of Equations a 

Starting Equation Differential Simplifications Final Equation 

Four-suffix equation with: 
a112 = a122 = (1113 = 0133 = 0223 
= a m  = a123 = .  . . = 0 

The symbols are defined in the t e x t .  Note that the A values for the two-suffix equation are defined differently than those for the three- and four-suffix equations. 

Examination of Eq. 35 shows that unlike the reduced three- and four- 
suffix solubility equations, it contains no constant to be estimated from 
ternary data. This, combined with the fact that the reduced three-suffix 
solubility equation with its fewer parameters (compared with the cor- 
responding four-suffix equation) satisfactorily describes the data used 
(6), leads us to choose Eq. 32 as our working equation for a three-com- 
ponent system. 

Four-Component Systems-For a four-component system, the 
three-suffix excess free energy expression is given by: 

g" 

+ ~ ~ ~ I Z ~ ~ Z I Z Z Z ~ Z ~ )  

With the following definitions: 
(Eq. 36) + A3-I + A4.3- - G I ~ ~ Q I  + K Z I Z Z Z D Z ~ ~ I  (Eq. 38) 

where A1.2, A2.1, Al.3, A3.1, A2.3, and A3.2 are as defined in Eqs. 22a-f 
without the four-body interaction terms. If we consider this system as 
a solute (denoted by subscript 2) in a mixture of three solvents (denoted 
by subscript8 1,3, and 4), then an approach similar to that given in Qs. 
23 to 29 yields the reduced three-suffix solubility equation for a four- 
component system: 

q 2  In x; ,~  = 21 In x; ,~ + 23 In X;,J + 2 4  In xi,, - A1$123(221 + 224 - 1) - 
q1 

43 4 4  q1 1 
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t G 1 2 4 q 2 i i i j  t G234q22324 - G 1 3 4 q 2 i i i 3 2 4  - K q 2 2 1 2 3 2 4  (Eq. 39) 

Equation 39 shows that only one constant, K, need be obtained from 
a quaternary system. The A values and G134 are obtained from solvent 
vapor pressure composition data. If we let 2 4  equal zero, Eq. 39 reduces 
to Eq. 32 with C2 = G123q2. Thus G123, G124, and G234 are estimated from 
solubility data a t  points where solvent 4, solvent 3, and solvent 1, re- 
spectively, are absent. They are, therefore, not new parameters in the 
same sense as K. It is important to note that even with the more complex 
four-component system, we need to estimate only one quaternary con- 
stant to describe the system. It is clear that if Eq. 39 is used for predictive 
purposes (for systems in which it is valid) the experimental labor saved 
is substantial. The same consideration holds to a lesser degree for Eq. 
32. 

DISCUSSION 

The reduced three-suffix solubility equation for a solute in a mixture 
of two solvents (Eq. 32) describes solubility in terms of pure solvent 
solubilities and contributions from solvent-solvent and solute-binary 
solvent interactions. The advantages of this approach over others are its 
generality and flexibility. Once the solvent-solvent interaction constants 
are obtained, they are fixed for that solvent system (provided one operates 
at or close to the temperature at  which they were determined, usually 
25’C). Thus, the only constant that needs to be determined to completely 
describe the solubility (assuming that the solubility of the solute in each 
solvent is known) is the ternary constant Cz. For a solute in a mixture of 
three solvents (four-component system), only one quaternary constant 
( K  in Eq. 39) is needed to describe the solubility. The ternary constants 
Gle4, G234, and Glz:{ are obtained in practice in the absence of solvents 

3 , 1 ,  and 4, respectively. The essential aspects of this treatment are pre- 
sented in Table I, including the n-suffix excess free energy model for the 
number of components involved and assumptions which simplify the 
solute-solvent interactions while keeping the solvent-solvent interaction 
terms as detailed as necessary. 
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